Retina-on-Chip: Modeling and treating eye diseases in a dish.

Edwin van Oosten^{1,#,*}, Devin Veerman^{2,#,*}, Stijn Berendsen^{1,#}, Rob Collin³, Dirk Lefeber⁴, Loes Segerink⁵, Seba Almedawar⁶, Jürgen Prestle⁶, Parth Patel⁷, Susan Roelofs^{7,&}, Stefan G. Kauschke^{6,&}, Andries van der Meer^{2,&}, Alejandro Garanto^{1,3,&}

¹Department of Pediatrics, Amalia's Children hospital, Radboud university medical center, Nijmegen, the Netherlands ²Applied Stem Cell Technologies group, University of Twente, Enschede, the Netherlands ³Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands ⁴Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud university medical center, Nijmegen, the Netherlands ⁵BIOS lab-on-a-chip, University of Twente, Enschede, the Netherlands ⁶Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany ⁷Locsense B.V., Enschede, the Netherlands [#]Scientific personnel consortium [&]Principal investigators consortium *Contributed Equally

Background

- The human retina is a highly organized structure consisting of neural retina, retinal pigment epithelial (RPE) cell layer, and vasculature, called the choroid (**Figure 1**).
- Retinal diseases lead to photoreceptor cell death, causing progressive blindness (1).
- We are investigating two particular retinal diseases:
 - Inherited retinal diseases (IRDs): Rare monogenic progressive disease with early age of onset.
 - Age-related macular degeneration (AMD): Multifactorial complex disease with late age of onset.
- Animal models do not completely recapitulate the human disease.
- Current human cell models often lack three-dimensional (3D) complexity of the human retina.

Aim of the project:

Develop a Retina-on-Chip system based on stem cell technology to accelerate disease modeling, therapeutics evaluation, and prevention for retinal diseases.

5

Figure 1. Cellular structure of the human retina. Photoreceptors and retinal pigment epithelial cells are often affected in retinal diseases.

Retinal organoids

- Retinal organoids (ROs) are 3D iPSC-derived retina-like structures.
- All retina-specific cell types are represented in ROs, including photoreceptor cells (2).
- After 140 days *in vitro*, photoreceptor cells in ROs develop outer segments, often referred to as brush borders (**Figure 2**).

Vasculature

- The interaction between the RPE and choroidal vasculature is vital for normal eye function (3).
- To create a choroidal-like vasculature, iPSC-derived vascular smooth

muscle cells (vSMCs) and endothelial cells (ECs) are combined.

iPSC-derived vasculature
form rounded, closed vessels
(Figure 4).

Personalized Retina-on-Chip

Figure 2. Brightfield image of iPSC-derived ROs. **A.** ROs at 140 days *in vitro*. **B.** ROs at 189 days *in vitro*. **C.** At this stage, a clear brush border, representing the outer segments of photoreceptor cells, can be seen along the edge of the ROs.

RPE cells

- RPE cells have several functions in the human retina (3), including:
 - Formation of the blood-retinal barrier
 - Photoreceptor outer segment renewal
 - Important role in the visual cycle
 - Nutrient and metabolite transport
- iPSC-derived RPE cells form a tight, pigmented barrier, when cultured in transwell inserts. (Figure 3)

Figure 4. Immunofluorescent image of iPSC-derived vasculature using vSMCs and ECs. Red = VE-cadherin, Blue = DAPI, scalebar= 100 μ m

Microfluidic chip

• The Retina-on-Chip (RoC) combines ROs, RPE, vasculature, and microfluidics to simulate the human retina.

• RPE cells are separated from the vasculature by using a membrane of 2 μ m thickness in order to mimick the Bruch's membrane (4).

• The microfluidic chip allows for cultivation and maturation of both iPSC-derived ROs as well as RPE cells (Figure 5).

Figure 3. RPE form a pigmented monolayer. **A.** Brightfield image of RPE cells cultured on transwell inserts 4 and 8 weeks after plating at P3 (115 days and 143 days *in vitro*, respectively). RPE increase in pigmentation over time. **B.** TEER measurements show that RPE form a tight barrier which increases in strength over time. Data represents mean ± SD ****p* < 0.001

Conclusion

- We have reprogrammed patient-derived cells into iPSCs.
- Successful generation of ROs, ECs, vSMCs, and RPE cells from iPSCs.
- First functional readouts are established and being analyzed.
- The first prototype of the microfluidic chip has been designed.

Future plans

- Further development of the microfluidic chip.
- Establishing additional functional readouts.
- Validation of functional readouts in disease models.

• First steps in combining cellular models on the Retina-on-Chip.

Support:

Health~Holla

(1) Veleri, S., Lazar, C., Chang, B., Sieving, P., Banin, E., & Swaroop, A. (2015). Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Disease Models & Mechanisms, 8(2), 109-129.
(2) Afanasyeva, T., Corral-Serrano, J., Garanto, A., Roepman, R., Cheetham, M. and Collin, R., 2021. A look into retinal organoids: methods, analytical techniques, and applications. Cellular and Molecular Life Sciences, 78(19-20), pp.6505-6532.
(3) Lehmann, G., Benedicto, I., Philp, N., & Rodriguez-Boulan, E. (2014). Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future. Experimental Eye Research, 126, 5-15.
(4) Murphy, A., Truong, Y., O'Brien, C., & Glattauer, V. (2020). Bio-inspired human in vitro outer retinal models: Bruch's membrane and its cellular interactions. Acta Biomaterialia, 104, 1-16.